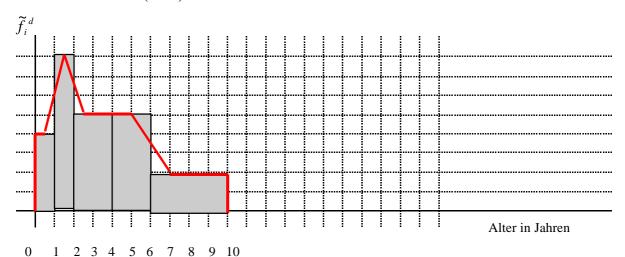
Lösung:

- a) In der Arbeitstabelle sollten folgende Werte stehen:
- 1. Häufigkeitsdichte (für Histogramm und Modus)
- 2. $m_i \cdot f_i$ (für die Berechnung des arithmetischen Mittels)

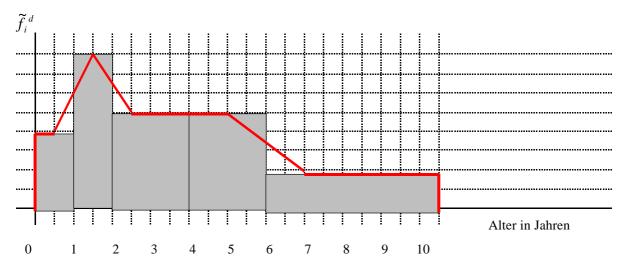
Alter in Jahren	Anzahl der Taxen	$m_i \cdot f_i$	Häufigkeitsdichte
vonbis unter	fi		$\widetilde{f}_i^{\ d} \ (\widetilde{c}=2)$
0 -1	2	0,5 · 2=1	4
1 - 2	4	1,5 · 4=6	8
2 - 4	5	3.5=15	5
4 - 6	5	5.5=25	5
6 - 10	4	8 · 4 = 32	2
Σ	20	79	-

Berechnung des arithmetischen Durchschnittsalters der Taxen:

$$\overline{X} = \frac{1}{N} \sum_{i=1}^{N} m_i \cdot f_i$$


$$\overline{X} = \frac{1}{20} \cdot 79 = 3.95$$

Bestimmung des feinberechneten Modus:


$$X_{_{Mod}} = L_{_{Mod}} + c_{_{Mod}} \cdot \frac{f_{_{Mod}} - f_{_{Mod-1}}}{2 \cdot f_{_{Mod}} - (f_{_{Mod-1}} + f_{_{Mod+1}})}$$

Da ungleiche Klassenbreiten vorliegen, muß mit der Häufigkeitsdichte gearbeitet werden. Die Modale Klasse ist diejenige von 1 - 2 Jahren!

$$X_{Mod} = 1 + 1 \cdot \frac{8 - 4}{2 \cdot 8 - (4 + 5)} = 1 + 1 \cdot \frac{4}{7} = 1,57142 \approx 1,57$$

